MINIMAL RESIDUAL DISEASE IN PEDIATRIC ACUTE LEUKEMIA

Peyman Eshghi
Prof. of Pediatric Hematology & Oncology
Mofid Children Hospital
S.B.M.U
Tehran: 4-95
Aim of therapy in acute leukemia

• **To induce remission** (clinical and hematological)

• **To maintain remission** by systemic chemotherapy and prophylactic CNS therapy

• **To treat the complications** of therapy and of the disease.
What is remission

• True remission requires:
 – M1 marrow status- Based on 200 cell count- with normal marrow cellularity and presence of all cell lines
 – CNS1 CSF status: <5 WBCs/mm³, no blasts on cytocentrifuge slide, TDT neg.
 – Normal CBC: with minimal levels of 500/mm³ granulocytes, 75,000/mm³ platelets and 12 g/dl hemoglobin with no blast cells seen on the blood smear
 – No clinical evidence of leukemic cell infiltration or envolvement (e.g., LAP, HSM, testicular enlargement, neurological sign, etc.)
 – No symptoms attributable to the disease (e.g., fever and bone pain)

Manual of Pediatric Hematology & Oncology. Lanzkowsky. 2011
What is relapse

• Relapse is defined by the appearance of any of the following:
 – More than 50% blasts in a single bone marrow aspirate
 – Progressive repopulation of blasts in excess of 5%, culminating in more than 25% in two or more bone marrow samples separated by 1 week or more
 – More than 25% blasts in the bone marrow and 2% or more circulating lymphoblasts
 – Leukemic cell infiltration in extramedullary organs, for example, CNS or gonads (biopsy proven) (for the diagnosis of isolated extramedullary relapse, the bone marrow should contain less than 5% blasts)
 – Blasts in the CSF with a cell count greater than 5 WBC/mm3.

Manual of Pediatric Hematology & Oncology. Lanzkowsky. 2011

Vigorous lympho-hematopoietic regeneration mimicking relapse may occur in patients who are not compliant with post-remission therapy. In these cases, MRD studies can quickly clarify the nature of the morphologically suspect cells.

What is MRD?

• Evidence of persistent viable leukemic cells in bone marrow, peripheral blood, and CSF, In case of clinical and hematological Remission:
 – at the end of induction, late in therapy and even in off-therapy patients who do not subsequently clinically relapse.
 – not only for newly diagnosed ALL cases but also for relapsed patients treated with salvage chemotherapy or BMT

 principles and practice of pediatric oncology. Pizzo.2011
Main Questions about MRD

• When?
• Why?
• Which level of sensitivity?
• What kind of method?
1) Immunophenotypes: sufficiently distinct to allow the detection of 1 leukemic cell among 10,000 normal cells (0.01%)

2) Clonal rearrangement of immunoglobulin (IG) and T-cell receptor (TCR) genes, which can be detected by PCR in most cases, with a sensitivity of 0.01% to 0.001%.

3) Chromosomal abnormalities and their corresponding gene fusions (such as BCR-ABL, MLLAF4, E2A-PBX1, and TEL-AML1)
 - Less than one-third of patients with ALL
 - Can be studied with Q-PCR in molecular pathology laboratories, allowing the detection of MRD with a sensitivity ranging from 0.1% to 0.001%.
Applications of MRD

• Optimize frontline therapy
 – Identify patients who require more intensive therapy OR may be cured with less intensive therapy
• Early detection of relapse (postremission sequential MRD monitoring)
 – Intensify therapy and prepare for HSCT
• In the setting of transplant
 – Optimize timing of transplant
 – Modulate immuosuppression, DLI, other interventions
• In the setting of novel therapies
 – Use as surrogate to evaluate response
• Identify molecular determinants of treatment response
• The identification of new markers of leukemia
MRD in the Treatment of De Novo ALL
Applications of MRD:
Optimize frontline therapy

International Berlin-Frankfurt-Munster (I-BFM) Study:

• patients with MRD levels of 0.1% or higher on both day 33 and day 78 of treatment had a relapse rate of 75% prompting treatment intensification for this group of patients.

Flohr T, Leukemia 2008;22:771–782
Reduced the importance of conventional prognostic factors such as age, white blood cell (WBC) count at diagnosis, genetic abnormalities, and prednisone response.

Applications of MRD: Optimize frontline therapy

St Jude Children’s Research Hospital, currently use MRD on day 15 and day 42 for treatment assignment:

• On day 15 patients with:
 – the most intensification is reserved for patients with 5% of more leukemic cells.
 – MRD of higher than 1% receive intensified remission induction therapy
 – undetectable MRD (<0.01%) on day 15 receive a slightly less intensive reinduction therapy and lower cumulative doses of anthracyclin.

• on day 42 patients with:
 – standard-risk ALL who have MRD of 0.01% or higher are reclassified as high-risk.
 – Any patient with MRD of 1% or higher at this time point is a candidate for HSCT in first remission.

In the COG P9900 series [21], EOI (day 29) BM and PB (induction day 8) MRD was measured by FCM in 2,143 children with pB-ALL. EOI MRD was highly predictive of survival. Patients with negative MRD (≤0.01%) (n = 1,588) had a 5-year EFS of 88% compared to 30% for patients with high MRD (>1%) (n = 67). However, EOI BM MRD was less helpful in identifying a low risk (LR) population compared to the day 8 PB MRD (n = 1,920); 30% of patients were day 8 PB MRD negative with a 5-year EFS of 90%. There was stepwise reduction in EFS at each 10-fold increase in MRD. Interestingly, a high day 8 PB MRD was a poor prognostic factor even if the day 29 MRD was negative. Patients with negative EOI MRD but high day 8 PB MRD (>1%) (n = 269) had poorer EFS compared to those with low day 8 PB MRD (n = 1,174) (79% vs. 90%; P < 0.0001).
MRD assessment by flow in COG P9900: Day 8 PB and Day 29 BM:
N= 2143 pre-B ALL

Borowitz et al, Blood 2008;111:5477-85

MRD levels in the day 29 BM were the strongest prognostic factor in this series. Presence of MRD > 0.01% in either predicted a poorer outcome.

Table 2

Cox multivariate analysis

<table>
<thead>
<tr>
<th>Variable</th>
<th>Hazard ratio</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day-29 MRD > .01%</td>
<td>4.31</td>
<td>< .001</td>
</tr>
<tr>
<td>NCI risk group</td>
<td>2.25</td>
<td>< .001</td>
</tr>
<tr>
<td>Trisomies 4 and 10</td>
<td>0.570</td>
<td>< .001</td>
</tr>
<tr>
<td>Day-8 MRD (PB) > .01%</td>
<td>1.51</td>
<td>.018</td>
</tr>
<tr>
<td>TEL-AML1</td>
<td>0.778</td>
<td>.151</td>
</tr>
<tr>
<td>Day-8 M1 marrow</td>
<td>1.034</td>
<td>.789</td>
</tr>
</tbody>
</table>

All variables shown entered in model.
Conclusions of COG Study
Browitz et al., Blood 111 (12):5477, 2008

• End of induction MRD is the single most powerful prognostic marker in multivariate analysis.
• More intensive intervention may be desirable for all patients with MRD greater than 0.01% at end of induction.
• Measurement of MRD in the PB at day 8 provides additional useful information, especially to identify patients at low risk of relapse when combined with other favorable factors.
• The 12% of patients with all favorable risk factors, including NCI risk group, genetics, and absence of days 8 and 29 MRD, had a 97% 5-year EFS with non intensive therapy.
MRD evaluation by PCR at EOI and EOC in 99 infants with ALL treated on the Interfant-99 protocol [41] showed that all patients with high MRD at EOC (≥0.01%; 26% of cohort) relapsed, compared with only 13% of those with low MRD (<0.01% at both TPs; 44% of cohort). For the remaining patients (MRD-IR; 30% patients), the relapse rate was 31%.[41]
MRD “Light” Concept

• Normal CD19+ cells expressing CD10 and/or CD34 in bone marrow are extremely sensitive to corticosteroids
 – After 2 weeks of remission induction therapy, these Normal CD19+ cells are typically <0.01%
 – CD19+ CD10+ and/or CD34+ cells at day 15-26 indicate MRD
 – their absence indicates good response

• Advantages:
 – Much reduced antibody panel
 – Can be performed with a one-laser cytometer
 – Easy interpretation
Recife Pilot Study #1

<table>
<thead>
<tr>
<th>Traditional risk features</th>
<th>Day 19 CD19⁺ CD10⁺ and/or CD34⁺</th>
<th>Risk Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td><0.01%</td>
<td>Low</td>
</tr>
<tr>
<td>Good</td>
<td>>0.01%</td>
<td>Standard</td>
</tr>
<tr>
<td>Poor</td>
<td>Any</td>
<td>High</td>
</tr>
</tbody>
</table>

Poor = T-lineage ALL, or B-lineage ALL with WBC ≥ 50K, age 10-15 yrs, testicular/CNS 3 leukemia, and/or adverse genotypes (*BCR-ABL, MLL* rearrangements, hypodiploidy <45 chromosomes)
In summary, there is unequivocal evidence (irrespective of study design, chemotherapy protocol, and MRD measurement method) that MRD is a strong and independent prognostic factor. It is important to measure MRD at two TPs in early therapy (EOI and EOC), especially if the EOI MRD is positive. Patients with pB-ALL or T-ALL who have persistent MRD at the EOC are at HR for relapse and may benefit from therapy intensification.

Summary

• MRD is a strong and independent prognostic indicator of relapse risk in children with pB-ALL, T-ALL, and infant ALL irrespective of MRD measurement methods and chemotherapy regimen.

• EOI MRD is a superior prognostic indicator compared to previously used clinical and biological factors.

• MRD measurement at a later TP (e.g., EOC) is important, especially for those with high EOIMRD and those with T-ALL.

• The major cooperative study groups have incorporated MRD into ALL risk stratification and therapy decisions.
No role for MRD in B cell ALL risk classification.
End Induction Treatment Assignment - NCI Standard Risk (SR) ALL (AALL0331)

Age 1.0-9.99 years
WBC < 50,000/ul
B precursor ALL only

- Triple trisomies OR TEL-AML1, &
 - Day 8 or 15 marrow M1, &
 - Day 29 marrow M1, &
 - Day 29 MRD < 0.1%,
 - No CNS 2/3, or testicular disease

- No triple trisomies OR TEL-AML1, &
 - Day 8 or 15 marrow M1, &
 - Day 29 marrow M1, &
 - Day 29 MRD < 0.1%

- ANY patient with:
 - CNS 3 or testicular disease, OR
 - Day 15 marrow M2/3, OR
 - Day 29 MRD ≥ 0.1% - 1%, or
 - Identified MLL translocation with a RER, or
 - Steroid pretreatment (selected cases)

Standard Risk - Low

Standard Risk - Avg

Standard Risk - High: Non Random Assignment to Augmented Therapy
End Induction Treatment Assignment - NCI High Risk (HR) ALL (AALL0232)

Age ≥ 10 years, and/or
WBC ≥ 50,000/ul
B-Precursor ALL only

Day 8 or 15 marrow M1, &
Day 29 marrow M1, &
Day 29 MRD < 0.1%, &
NO CNS 3 or testicular disease

High Risk: Randomized study

Day 15 marrow M2/M3, or
Day 29 MRD ≥ 0.1 and < 1%, or
CNS 3 or testicular disease, or
Identified MLL translocation with a RER, or
Steroid pretreatment (selected cases)

High Risk: Assignment to Augmented therapy
Applications of MRD: Optimize frontline therapy

Treatment deintensification

• The best way to apply MRD results for treatment deintensification has not yet been defined.

• 183/402 (45.5%) of patients with B-lineage ALL were MRD-negative on day 19, defined as having <0.01% leukemic cells in bone marrow.
 ✓ early MRD negativity might be a good prognostic feature only in the context of intensive therapy
 ✓ St Jude treatment protocols from 1967 to 1983 (much less intense than today’s regimens): 36%-53% cure
 ✓ where all treatment stopped 1 year after diagnosis, the mean 5-year event-free survival approached 60%.

✓ Toxicity of intensified treatments leads to less OS

Dario Campana. Semin Hematol. 2009 January; 46(1): 100–106.
Acute Leukemia
Predominance of blast cells in bone marrow

Assignment of B, T, or Myeloid- Ontogony

B cell
- Tdt+, PAS+/−, FAB L1,L2

Pro-B/early proB
- CD34+/CD19+
- t(4;11)+, t(9;22), hyper-Diploid and others
 (Table 19.1)

Common ALL(cALL)
- CD34+/-,CD19+/CD10+
- FAB L1 (occasionally L2)
- Hyperdiploid, t(12;21), t(9;22), 6q-

Pre-B ALL
- CD34-/CD19+/CD20+/CD22+
- FAB L1/L2
- Cytogenetics frequently similar to cALL but often t(1;19) or t(9;22)

B-ALL
- CD10+/-CD19+,Tdt-
- FAB L3
- Burkitt translocations: t(8;14) and alternatives t(2;8), t(8;20) between Ig receptors and cmyc (Table 19.1)

T cell
- PAS (block positivity)

Pro-T
- CD3+/CD7+
- Multiple TF /TCR translocations
 (Table 19.1)

Pre-T
- CD2+/CD5+//CD8+
- Multiple TF/TCR
 (Table 19.1)

Common T
- CD2+/CD5+/8+
- Multiple TF/TCR

Late T-ALL
- TCR α/β +, γ/δ+

Myeloid
- granules,
- Auer rods,
- Sudan Black+
- Esterase +/-
 (See Chapter 20)
B-cell ontogeny

- μ rearrangement
- χ rearrangement
- λ rearrangement
- cIg
- alg
- HLA-DR
- CD19
- CD24
- CD10
- CD20
- CD21
- CD22
- CD23

(A)

T-cell ontogeny

- TCR δ rearrangement
- TCR γ rearrangement
- TCR β rearrangement
- TCR α rearrangement
- CD7
- CD5
- CD2
- CD1
- CD4
- CD8
- CD3
- TCR (αβ or γδ)

(B)
MRD in the Treatment of Relapsed ALL
• Patients with HR relapsed ALL typically are treated with allogeneic HSCT.

• In contrast, SR relapsed ALL patients are treated with chemotherapy (with or without cranial irradiation).

• The decision regarding the HSCT use has been most challenging in the largest group of IR patients:
 – Availability of a matched sibling donor
 – MRD at EORI
After a retrospective study indicated a significant impact of MRD on EFS [25], the BFM study group prospectively evaluated the prognostic impact of BM MRD (measured by PCR) at the end of reinduction (EORI) therapy (week 5) for patients with IR relapsed ALL.[19,25,32] The first part of this study, during which participants were blinded to MRD results for the determination of HSCT indication [32], revealed a major prognostic difference between the MRD-negative (<10^{-3}) and MRD-positive group (\geq 10^{-3}) with regard to 10-year EFS (76% vs. 18%) and cumulative incidence of relapse (CIR, 21% vs. 61%).[32] Based on these results, all patients with IR relapse and a high EORI MRD level (\geq 10^{-3}, n = 99) were assigned to HSCT from either a matched sibling or matched unrelated donor in the subsequent study (ALL-REZ BFM 2002). In contrast, those with low MRD levels continued treatment with chemotherapy and cranial irra-
High MRD IR relapse ALL: Alogenic HSCT (sibling or unrelated)
Low MRD IR relapse ALL: Chemotherapy

In summary, (i) the use of MRD-based HSCT indication in patients with IR relapsed ALL improved EFS for patients with high MRD to the same level observed in patients with low MRD (without HSCT) and (ii) HSCT did not improve the survival of patients with IR relapse and low MRD even when a sibling donor was available, allowing de-escalation of therapy (no HSCT).
Applications of MRD
Postremission sequential MRD monitoring

• To identify relapse before its detection by morphology or cytogenetics: re-intensify treatment, enough time to find donor for HSCT, etc.
 – Vigorous lympho-hematopoietic regeneration mimicking relapse: to confirm or rule out it
 – those patients who are in remission but who remain MRD-positive at the end of remission induction therapy:
 • Conversion of MRD-positive to MRD-negativity is associated with a favorable outcome
 – Conversion to MRD-positive or persistence or increase in levels of MRD carries a high hazard of relapse
MRD Plans for TXVI – Risk Assignment

Leukemia-associated phenotype

Yes

Monitor MRD by flow

Ambiguous result?

Day 15, Day 43

MRD pos at day 43

Continue MRD monitoring

MRD neg at day 43

T-ALL

B-lineage ALL

Stop MRD monitoring (but resume if necessary)

No

Develop PCR assay

Store DNA
MRD Prior to HSCT
Several studies demonstrated that high BM MRD levels (10^{-2}–10^{-3}) prior to HSCT were associated with a high probability of post-HSCT leukemic relapse (80%), whereas low (10^{-5}) and undetectable MRD was associated with a relapse probability of only 25–30% after HSCT.[51-57] A landmark study prospectively examined the prognostic significance of MRD in pediatric ALL patients treated in the Dana-Farber Cancer Institute (DFCI) Pediatric Bone Marrow Transplant (BMT) Program between 1999 and 2005.[33] MRD was measured at a median of 13 days prior to HSCT by PCR, and clinicians were blinded to the results. Patients with MRD level $<10^{-4}$ prior to HSCT ($n = 46$) had an MRD-negative vs. MRD-positive group). MRD prior to HSCT was the only independent prognostic factor in a multivariate analysis predicting AEs after HSCT (risk ratio 2.45).
Applications of MRD

Optimize timing of transplant &
Modulate immuno-suppression

• **before HSCT** : patients with MRD positivity who are candidates for transplant are associated with an increase risk of relapse may receive additional courses of chemotherapy in efforts to reduce the levels of MRD, possibly below detection threshold,

• **After transplant** : detection of MRD can serve as an indicator for decreasing immunosuppressive therapy and/or administering donor lymphocyte infusions.
Clinically informative MRD levels

- The 0.01% threshold is commonly used to define MRD positivity, simply because this represents the typical limit of detection for routine flow cytometric and molecular assays.

- Prognostic indicator for relapse rate:
 - Children’s Oncology Group (COG): **0.01% or higher** on day 29 predicted a poorer outcome. *Blood. 2008i*
 - I-BFM Study Group: **0.1% or higher** on days 33 and 78. *Blood 2002;99:1952–1958*
 - Those of the Austrian BFM group: also the cut-off level of **0.1%** on day 33
 - The Dana-Farber Cancer Institute ALL Consortium: an MRD threshold of **0.1%** best predicted relapse hazard. *Blood 2007;110:1607–1611*
Clinical significance of low levels of MRD at the end of remission induction therapy in childhood ALL (Blood. 2010;115(23):4657-4663)

- Patients with low level of MRD (0.001% - < 0.01%) had a 12.7% (5.1%; SE) cumulative risk of relapse at 5 years, compared with 5.0% (1.5%) for those with lower or undetectable MRD ($P < .047$).

- Low levels of MRD (0.001% - < 0.01%) at the end of remission induction therapy have prognostic significance in childhood ALL, suggesting that patients with this finding should be monitored closely for adverse events.

Figure 2. Cumulative incidence of relapse (mean ± SE) among 379 children with B-lineage ALL whose MRD levels were less than 0.01% on day 46 (end of remission induction therapy). Patients with MRD 0.001% to less than 0.01% had a significantly higher incidence of relapse than those with lower levels or undetectable MRD by PCR.
What is the best method to study MRD?

• Both flow cytometry and PCR amplification of antigen receptor genes;
 – yield similar results when MRD is at levels of 0.01% or above,
 – produce MRD estimates within 24 hours of sample collection.
 – In some experience, the overall cost of the two methods is similar but others have estimated PCR to be more expensive.

• Flow cytometry
 – is more likely to be readily available and,
 – studies at early time points during therapy, like day 15, has an advantage over PCR, as the development of a patient-tailored PCR assay typically requires more than two weeks.

• PCR
 – might be preferable for studies post-HSCT or at the end of therapy because of its high sensitivity.

• Eventually, the most important factor:
 o expert laboratory
 o available to a cancer center
 o cooperative.
Can MRD be determined in peripheral blood?

• In patients with B-lineage ALL, MRD is usually present at higher levels in bone marrow than in peripheral blood.

• In T-ALL, MRD levels in peripheral blood are similar to those in bone marrow: sequential MRD testing can be performed in blood.

Brisco et al., Br J Haematol 1997;99:314–319
Coustan-Smith E, et al, Blood 2002;100:2399–2402
MRD in Peripheral Blood vs. Bone Marrow

Coustan-Smith et al, Blood 2002;100:2399-2409
MRD & childhood AML

• Currently, the Children's Oncology Group (COG) is using 15% to define primary induction failure cutoff in their clinical trials.

• **Molecular MRD:**
 – Leukemia-specific fusion genes are found in only about 30% of patients:
 • t(15;17) fusion product PML-RAR (The only AML subtype for which PCR inconclusively utilized for MRD detection is APL)
 • Abnormal t(8;21) and inv(16) real-time quantitative PCR (RQ-PCR)
 • Nonspecific genes like Wilms' tumor 1 (WT1)

• **Immunophenotypic MRD.**
 – At least 80% of patients have an aberrant phenotype: as current international clinical trial needs
 – Can detect one cell with a leukemic immunophenotype in 1,000 to 10,000 normal cells.

The absence of broadly applicable molecular markers in blasts of pediatric AML has favored the use of MRD measurement by FCM. Emerging evidence suggests that MRD is strongly prognostic in AML when measured early in therapy. In
• In 1999, Campana and Coustan Smith estimated that the top four combinations for acute leukemia MRD detection in flow were

 (i) CD19/CD34/CD10;
 (ii) CD13/CD33/CD34,
 (iii) CD13/CD33/CD117
 (iv) CD13/CD34/CD117

 Table 2. Combinations identifying LAIP with CD34 lack of expression.122

<table>
<thead>
<tr>
<th>Combination</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD11b+/CD117+/CD34-</td>
<td>9</td>
</tr>
<tr>
<td>CD84+/CD135+/CD117+</td>
<td>5</td>
</tr>
<tr>
<td>CD34+/CD15++/CD33+</td>
<td>1</td>
</tr>
<tr>
<td>CD88+/CD34-/CD90+</td>
<td>1</td>
</tr>
<tr>
<td>CD65+/CD87++/CD34-</td>
<td>1</td>
</tr>
<tr>
<td>CD7+/CD33-/CD34-</td>
<td>1</td>
</tr>
<tr>
<td>DR+/CD33+/CD34+</td>
<td>7</td>
</tr>
<tr>
<td>CD34+/CD56+/CD33+</td>
<td>3</td>
</tr>
<tr>
<td>CD34+/7.1+/CD33+</td>
<td>1</td>
</tr>
</tbody>
</table>
Recent multivariate analysis by COG showed:

- up to one third of patients thought to have residual leukemic blasts by morphologic assessment, are MRD Neg by FCM
- end of first induction MRD was the only factor that remained prognostic when compared with cytogenetic and molecular risk groups
- MRD is a potent tool to stratify treatment for pediatric AML.

The MRD–AML–BFM study group

- while the presence of MRD correlated with poorer outcomes, it did not contribute to overall risk stratification.[62]

t(8;21) inv(16) or t(16;16)
Mutated CEBPA without FLT3-ITD
Mutated NPM1 without FLT3-ITD

Provisional Low Risk

MRD-
MRD+

Low Risk

No HR or LR feature

Provisional Intermediate Risk

MRD-
MRD+

Intermediate Risk

MRD-
MRD+

High Risk

t(6;9), t(8;16), t(16;21), -7, -5
Megakaryoblastic leukemia without t(1;22)
Treatment-related AML
MDS-related AML
FLT3-ITD high AR
<table>
<thead>
<tr>
<th>Type of pediatric leukemia</th>
<th>Recommended indication for MRD measurement</th>
</tr>
</thead>
</table>
| Pediatric ALL | - To optimize the accuracy and timeliness of reporting, a *diagnostic (baseline MRD panel) specimen* should be conducted for all patients.
- All patients, regardless of immunophenotype, should receive assessment of MRD at *day 8* after start of induction therapy in peripheral blood and *end of induction* in bone marrow.
- Patients with positive MRD at the end of induction should have MRD repeated at the *end of the consolidation phase*.
- For patients with intermediate risk relapse of ALL, MRD should be tested *after re-induction* to facilitate risk stratification for HSCT.
- For *relapsed patients proceeding to HSCT*, MRD should be repeated *prior to transplant*. |
| Pediatric AML | - To optimize the accuracy and timeliness of reporting, a *diagnostic (baseline MRD panel) specimen* should be conducted for all patients.
- MRD should be assessed at the *end of first course of induction therapy* on all newly diagnosed patients to aid in risk stratification. |

ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; HSCT, hematopoietic stem cell transplant; MRD, minimal residual disease.
یا اول و یا آخر
یا ظاهر و یا باطن