RON DEFICIENCY ANEMIA &THALASSEMIA

B Major Thalassemia

It is a reduction of the red cell volume or hemoglobin concentration below -2SD for age, sex.

Normal Range, Hb

Birth:16/6 gr/dl 2 Mo:11/5 3-6 Mo 11/5 6-24 M :12 2-6 Y:12/5 6-12 Y:13/5 12-18 Y: F =12-14 M=14-16

Normal Range, MCV

Birth:108FL
2 Mo:96
3-6 Mo:91
6-24 M :78
2-6 Y:81
6-12 Y:86
12-18 Y: F =90 M=88

Iron is vital for all living organisms; oxygen Transport

Red blood cells specialisations

biconcave shape

<u>no</u> nucleus

\rightarrow extra space inside

contain haemoglobin

→ the oxygen carrying molecule

Iron deficiency is a major health problem worldwide and especially in developing countries.

Iron-deficiency is the most prevalent nutritional deficiency worldwide

□ Iron deficiency is the most common single cause of anemia worldwide

Review Of Articles 1

- Prevalence of iron deficiency anemia in 6mo-5 years old children in Fars , southern IRAN
- Kadivar MR & Collegues. Med Sci Monit,2003;9(2);CR 100-104
- □ 541 patients:
- □ 110 p(%19.7): Serum Ferritin level < 12ng/ml
- □ 101 P(%18.7): low serum Hb
- **Developing Countries: IDA%25-%35**
- □Industerialized Country: IDA %5-%8
- Iron supplements by Health care centers , Free of charge

Iron status

The concentration of Iron in:

Infant: 75-80 mg/kg(BW)

50mg/kg: Hb Mass

25mg/kg: Storage Iron

5mg/kg: Myoglobin & tissue

Iron

Iron status The concentration of Iron in:

Adult: 40-50 mg/kg(BW) 30mg/kg: Hb Mass 6-7mg/kg: Myoglobin, Heme enzymes & non heme enzymes * 6-7mg/kg (F) storage Iron * 10-12 mg/kg (M)

< 0/5%: Transport Iron

Iron Metabolism

Cellular sequestration & Metabolism of Iron is mediated by 3 proteins:

* Transferrin

* Transferrin receptor

it in is the major storage protein with 24 subunit: * Light chain (L), 19 kD Disorders Research Center * Heavy chain (H) 21 kD مركزتمقيقات بيمارى هاى غونى مادرزادى كودكان H gene locus: ch 11: Heart, Iron – Metabolism L gene locus: ch 19: Liver & spleen- Iron storage function Ferritin is found in virtually all cells especially: **Erythroied precursors** Macrophages Hepatocytes F.molecule: 4500 Iron atoms Half life: 60 hour **Catabolism of, F: Reutilization of Iron core** Hemosiderin conversion

Ferritin

Iron balance is physiologically regulated by controlling Iron absorption.

The availability of dietry Iron for absorption is dependent to:

The amount of Iron

Form of Iron

Composition of the diet

GI factors

peripheral Blood,CBC

oR BC

o Hb (is not specific)

o MCV

o MCH

o Reticulocyte

oPeripheral blood smear, Morphology

Indirect: 1- plasma ferritin:

(the most useful) in the absence of:

* Tissue necrosis

* Inflammation

* Neoplasm

* liver disorder

* *î turn over of RBC*

Prussian Blue Stain of Bone Marrow

Iron deficiency anemia

Iron deficiency anemia is the most common cause of anemia.

Growth & diet are almost always contributing factors in childhood

Etiology / IDA

 Blood Loss
 Gastrointestinal Tract:

 Milk -induced Enthropathy
 Peptic ulcer
 Inflamatory Bowel Diseaes
 Meckel Diverticuculm &Polips
 Drugs: Salicylates
 Hookworm Infestation
 Pulmonary Hemosiderosis
 Iatrogenic
 Menstural Blood Loss

Urinary Blood Loss(rare)

Etiology/IDA

Increased Physiologic Requirement -Pregnancy -Infancy -Adolescence

Malabsorption

- Inflamatory Bowel Diseaes
- -Tropical Sprue
- Gastrectomy
- Pica

Dietary inadequacy: Iron Poor Diet

Combinations of above

Clinical manifestations

- *Hematologic
- * Non Hematologic
- Pallor
- Weakness, fatigue, Irritability
- Anorexia
- Pica
- Blue sclera
- •Koilonychias (spoon- shaped nails)
- Glossitis
- Angular stomatatis
- Post cricoid esophageal web (plummer winson syndrome)
- Impair of intellectual & learning
- Impaired of immunity
- Slightly enlarged spleen
- Cardiopulmonary failure & death.

Iron Deficiency Anemia

- Additional signs/symptoms
 - spoon-shaped nails (koilonychia)
 - cheilosis
 - glossitis
- Laboratory findings
 - hypochromic, microcytic
 - \downarrow ferritin
 - \downarrow serum iron
 - \uparrow TIBC
 - ↑ transferrin

Laboratory test:

1-Serum Ferritin: < 10-12 ug/l

2- Serum Iron(Decrease)

3-Total iron binding capacity TIBC **↑**

4- peripheral blood : RBC, Hb- HCT \downarrow

MCV, MCH \downarrow

(RDW(Red blood cell distributaion width)↑

Reticulocyte, Mild↑

4- Serum Soluble Transferrin Receptor ↑5-FEP ↑

6- BMA & BM Biopsy (Prussian Blue Staining)

Normal = 0.2-2 % Reticulocyte count

Corrected reticulocyte = <u>Pt HCT X Reti.</u> Normal HCT

-leukocytosis -leukopenia -Abnormal cells

-Thrombocytosis -Thrombocytopenia

IDA

Differential Diagnosis of I.D.Anemia

1- β. Thalassemia minor
2- β. Thalassemia major
3- Chronic disorders
4- lead poisining
5- α. Thalassemia

B Thalassemia trait (Heterozygous)

 \Box Expression of one β gene is impaired by mutation where as the other gene is normal.

Slight ineffective erythropoiesis & modestly decrease of RBC survival

Mild erythrocytosis

Marked microcytosis

Peripheral Blood: microcytosis, hypochromia & targeting

Differntial Diagnosis B Thalassemia trait / Iron Deficiency Anemia

B. Th. Trait: **Increase of RBC- Mild Erythrocytosis**, **D**Marked microcytosis □ IDA : RBC count decreased, MCV is rarely as low as B. Th. Trait □ RDW (Red Cell Disrtribution Width by Automated cell counter) : Increased in ÍDA □ Mentzer Index(MCV/RBC): B.Th.Trait <13IDA > 13

CBC B. TH .Trait &I. D.A

WBC=10000/mm3 RBC=6/000/000/mm3 Hb=10 gr/d HCT=%30 MCV=60 FL MCH=23 pg

WBC= $6000/mm_3$ RBC=3/200/000/mm3 Hb=7gr/dl HCT=%21 MCV=74FL MCH=25Pg Platelet=180000/mm3 Platelet=600000/mm3

B Thalassemia trait (Heterozygous)

□Hb Electrophorasis:
 ★ High A2 Hb (3.5-8%)
 ★ High A2 & High F Hb(5%-20%)
 ★ Low A2 Hb (Hb F 5%-15%,δβ
 Thalassemia)
 ★ Normal A2 Hb

IRON DEFICIENCY versus ACD

Serum Iron Transferrin Ferritin

Iron Deficiency

ACD

Major Thalassemia /Cooley Anemia

Clinical manifestations

• Pallor

- Failure to thrive
- o Irritability
- o Icterus
- o Hepatosplenomegaly
- o Skeletal changes
- o Prone to infection

B MAJOR THALASSEMIA

Hepatosplenmegaly

Laboratory Test

o Hypochromic & microcytic anemia **0** NRBC ↑ **o** Serum Iron & Ferritin *(*) **o** BMA: marked E hyperplasia E/M: 20/1 0 **o** *Hb electrophoresis:* $HhF\uparrow$ 0 Hb A2: variable levels 0 Hb A: reduced or absent 0 o Th. Trait in both parents o Globin biosynthetic ratio: diagnostic

Treatment of β Thalassemia Major

• Gene therapy

• Stem cell transplantation

Blood transfusion

• Determine the blood type & minor Red Cell Antigen :

o ABO, RH, Kell, Kidd, Duffy

oPatients should not receive PRBC more than two weeks old oHb level:9/5-11/5 gr/dl

oVolume of PRC:10-20 Ml/kg of leukocyte-poor and filterd RBC oTransfusion interval:3-5 weeks

opretransfusion laboratory tests:CBC ocross match,RBC antibody screen

Treatment of I.D.A

Replenishment of body Iron

Correction of factor responsible for Iron deficiency

Iron administration:

*Oral: safe, cheap & effective

*Parenteral: IM, IV

Parentrarl Indication :

* poor tolerance

* GI Iron absorption is compromised

* has Iron needs that can not be met oral therapy because of chronic uncontrollable bleeding

Oral Iron therapy

Ferrus sulphate is the preferred, salt. The Iron element: 20% Dose: 3-6mg/kg/day divided dose Administration: between meals Side effects ,10-20%: Nausea Vomiting Diarrhea, constipation Abdominal pain

Plan for side effects : 1- Administration immediately after meal 2-↓ dose

Parenteral Iron therapy

Dextran:

Side effects 1- Anaphylaxia

2- Serum sickness- like reaction

3- Skin staining (IM)

4- Muscle necrosis

5- Phlebitis

6- Persistent pain

7-Artralgia

Because of anaphylaxia: Test dose 0/5cc

1 hour before.

Parenrtral iron Therapy

Iron Dextran
Iron Gluconate
Iron Sucrose
Total Dose of Iron dextran (mg): Weight (kg) ×desired increament Hb (g/dl) ×2.5
Iomg/kg: Additional for Iron Stores Not more than 2cc/day

Timing for Iron replacement in infant

1- Breast milk infant: 1mg/kg/day Iron supplementation beyond 6 months

2- Infant with Iron supplemented formula: 12mg/lit Iron

3- Cow's milk should be avoided during the first year.

4- premature infants should receive Iron supplements immediately.

